Effects of bone marrow aspirate concentrate and platelet-rich plasma on patients with partial tear of the rotator cuff tendon

Abstract

Background

We compared the clinical course of rotator cuff tears between rotator cuff exercise and bone marrow aspirate concentration (BMAC)-platelet rich plasma (PRP) injection to identify the therapeutic effects of BMAC-PRP on partial tear of the rotator cuff tendon.

Methods

Twenty-four patients with partial tear of the rotator cuff tendon participated in this study. Twelve patients underwent extraction of BMACs and PRP and received the injection of BMAC-PRP at the tear site under ultrasound guidance. Twelve patients in the control group were asked to perform the rotator cuff exercise for 3 months. Visual analog scale (VAS) and manual muscle test (MMT) scores of the supraspinatus muscle were measured, and the American Shoulder and Elbow Surgeons (ASES) score was recorded before, 3 weeks, and 3 months after injection. Tear size was measured by the greatest longitudinal tear length.

Results

The change in the VAS differed between groups at 3 months (P = 0.039) but not at 3 weeks (P = 0.147). The ASES scores in the BMAC-PRP group changed from 39.4 ± 13.0 to 54.5 ± 11.5 at 3 weeks and 74.1 ± 8.5 at 3 months while those in the control group changed from 45.9 ± 12.4 to 56.3 ± 12.3 at 3 weeks (P = 0.712) and 62.2 ± 12.2 at 3 months (P = 0.011). The tear size decreased at 3 weeks or 3 months after the BMAC-PRP injection but was not significantly different from that in the control group.

Conclusions

BMAC-PRP improved pain and shoulder function in patients with partial tear of the rotator cuff tendon.

Trial registration

The patients were registered in the institutional board registry of Samsung Medical Center (registry number 2014-07-173).

Keywords

Bone marrow aspiratesPlatelet-rich plasmaRotator cuff tearDegeneration

Background

Rotator cuff tendon tear is a common shoulder problem with a prevalence of about 21% in the general population

[1]. The rotator cuff tendon tear is multifactorial disorders caused by age-related degeneration, oxidative stress, and vascular changes although the pathophysiology of rotator cuff tear is not fully understood [2, 3]. The risk factors include traumatic injury, degenerative changes, repetitive impingement, genetic predisposition, and smoking [1, 4].

Rotator cuff tendon tear is treated by non-surgical and surgical methods. Non-surgical treatments are rotator cuff strengthening exercise, oral medication, and corticosteroid injection. However, all of these focus on symptomatic treatments rather than restoration of shoulder function and prevention of the progression of tears. Rotator cuff stretching and strengthening exercise can improve shoulder function, but the protocols are not standardized and its effect is not evident yet [5]. The natural course of non-surgically treated rotator cuff tears is anatomic tear deterioration, not spontaneous regeneration in the majority of patients [6, 7]. Surgical repair of the torn rotator cuff can restore shoulder function and prevent the progression of tear, but failure rates of rotator cuff tear after surgical repair range from 0 to 78% [8].

Biological adjuvants, such as platelet-rich plasma (PRP) and stem cells, have been used to enhance the regeneration of torn rotator cuffs and improve symptoms in preclinical studies [9, 10, 11]. PRP and stem cells enhance the regenerative potentials of tendon stem cells [12, 13, 14] and regeneration of torn supraspinatus in preclinical studies [15, 16]. Several clinical studies have described PRP-augmented rotator cuff repairs in patients with rotator cuff tears [17, 18]. Therefore, regenerative biological treatment will be helpful to restore shoulder function and prevent the progression of tear.

Bone marrow mesenchymal stem cells (BMMSCs) and bone marrow aspirate concentrates (BMACs) are good therapeutic candidates for use in repair of damaged structures [19], but adequate scaffolds are needed because of inadequate survival, reparative capacity, and differentiation capacity of BMMSCs and BMACs without them [20]. In addition to its own regenerative potentials, PRP can play a role in scaffolds of BMAC, and BMAC-PRP complexes have shown good regenerative potential in diabetic ulcers [21], osteochondral defects [22], and spinal cord injury [23].

We hypothesized that a BMAC-PRP complex would enhance regeneration of torn rotator cuff tendons and improve clinical symptoms. We compared the clinical course of partial tear of the rotator cuff tendon between rotator cuff exercise and BMAC-PRP injection to identify the therapeutic effects of BMAC-PRP on partial tear of the rotator cuff tendon.